

Applied Biological Materials Inc

Tel:

1-866-757-2414 Email: info@abmGood.com Website: www.abmGood.com

Tag DNA Polymerase

Store at -20°C

Cat. No.	Description	Concentration	Quantity
G008	Taq DNA Polymerase	5 U/µl	5000 U
G009	Taq DNA Polymerase	5 U/µl	1000 U
G126	Taq DNA Polymerase	5 U/µl	10000 U

Product Description

Tag DNA Polymerase is a highly thermostable DNA Polymerase isolated from the thermophilic bacterium Thermus gauaticus. Tag DNA Polymerase catalyzes the 5' to 3' synthesis of DNA. The enzyme has no detectable 3' to 5' proofreading exonuclease activity, and possesses low 5' to 3'exonuclease activity. PCR products, amplified up to 6 kb in length with Tag DNA Polymerase, contain a single base (A) 3' overhang.

Product Components	1000 U	5000 U	10000 U
Taq DNA Polymerase (5 U/µl)	200 µl	1 ml	2 ml
10X PCR Buffer, with Mg ²⁺	2 ml	10 ml	20 ml
25 mM MgSO ₄	1 ml	1 ml	1 ml

Storage Buffer Components

50 mM Tris-HCI (pH 8.0), 100 mM NaCl, 0.1 mM EDTA, 5 mM DTT, 50 % glycerol and 1.0 % Triton[®]X-100.

Unit Definition

One unit of the enzyme catalyzes the incorporation of 10 nmol of deoxyribonucleotides into a polynucleotide fraction in 30 mins at 74°C.

Shipping and Storage

Upon arrival, Tag DNA Polymerase should be stored at -20°C. Avoid repeated freeze-thaw cycles of all Tag components to retain maximum performance. All Tag components are stable for 1 year from the date of shipping if stored and handled properly.

Protocol

The following basic protocol serves as a general guideline and starting point for any PCR amplification. Optimal reaction conditions (incubation times, temperatures, concentration of Tag DNA Polymerase, primers, MgSO, and template DNA) may vary and need to be optimized for each specific PCR.

All PCR experiments should be assembled in a nuclease-free environment. In addition, DNA sample preparation, reaction set-up and subsequent reaction(s) should be performed in separate areas to avoid cross contamination.

A negative control reaction (omitting template DNA) should always be performed in tandem with sample PCR to confirm the absence of DNA contamination.

1. Add the following components to a sterile 0.2 ml PCR tube sitting on ice.

Components	Volume	Final Concentration
Template DNA	~100 ng	~2 ng/µl
Forward primer (10 µM)	1 - 2.5 µl	200 - 500 nM
Reverse primer (10 µM)	1 - 2.5 µl	200 - 500 nM
10X PCR buffer, with Mg ²⁺	5 µl	1X
25 mM MgSO $_4$ (optional)*	0 - 3 µl	1.5 - 3 mM
dNTP Mix (10 mM)	1 µl	200 µM
Taq DNA Polymerase (5 U/µl)	0.5 - 1 µl	2.5 - 5 U
Nuclease-free H_2O	up to 50 µl	-

Optimal Mg²⁺ concentration is specific to each DNA template-primer set and can only be determined experimentally.

We recommend preparing a mastermix for multiple reactions to minimize reagent loss and enable accurate pipetting.

- 2. Mix contents of tube and centrifuge briefly.
- 3. Incubate tube in a thermal cycler at 94°C for 3 mins to completely denature the template.
- 4. Perform 30 35 cycles of PCR amplification as follows:

Denature: 94°C for 30 sec

Anneal: 45 - 72°C for 30 sec

Extend: 72°C for 1 min/1 kb template

- 5. Incubate for an additional 5 mins at 72°C and maintain the reaction at 4°C. The samples can be stored at -20°C until use.
- 6. Analyze the amplification products by agarose gel electrophoresis and visualize by ethidium bromide or SafeView[™] (Cat No. G108) staining. Use appropriate molecular weight standards.

For laboratory research only. Not for clinical applications. For technical questions, please email us at technical@abmgood.com or visit our website at www.abmGood.com